Pleistocene preserve: a population growth problem of mammoth proportions
A number of processes that involve large numbers are critical to civic scientific literacy, including many biological topics. Understanding the basic causes of such large-scale processes, such as population growth, speciation, and extinction, are key to engaging evolution and ecology learning. Here...
Gespeichert in:
Veröffentlicht in: | Evolution education & outreach 2019-06, Vol.12 (1), p.1-7, Article 16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A number of processes that involve large numbers are critical to civic scientific literacy, including many biological topics. Understanding the basic causes of such large-scale processes, such as population growth, speciation, and extinction, are key to engaging evolution and ecology learning. Here we present a teaching module which uses manipulatives to addresses one such topic, population growth, utilizing charismatic organisms, mammoths. The module involves an engaging hypothetical scenario, the restoration of mammoths from extinction (de-extinction) in a captive population being grown to be placed in zoos globally. The module explores both population growth modeling and carrying capacity in relation to both modern elephant conservation and human population growth. We include detailed laboratory instructions for both students and instructors. While we designed and implemented it in a non-majors biology course, further extensions are detailed to utilize more robust modeling and complex scenarios for inquiry-driven majors biology and advanced population ecology courses. This module allows for exploration of a number of concepts within population growth, with natural lead-ins to additional topics. We make the case for mammoths and elephants more generally as charismatic organisms for which students’ familiarity can leverage engagement with many important biological concepts, in this case population growth. |
---|---|
ISSN: | 1936-6426 1936-6434 |
DOI: | 10.1186/s12052-019-0108-z |