A Multi-Mode Bioactive Agent Isolated From Ficus microcarpa L. Fill. With Therapeutic Potential for Type 2 Diabetes Mellitus
Type 2 diabetes is a metabolic disorder, characterized by hyperglycemia and glucose intolerance. Natural products and its derived active compounds may be achievable alternatives for the treatment of type 2 diabetes. In present study we investigated the antidiabetic potential of and isolated bioactiv...
Gespeichert in:
Veröffentlicht in: | Frontiers in pharmacology 2018-11, Vol.9, p.1376 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Type 2 diabetes is a metabolic disorder, characterized by hyperglycemia and glucose intolerance. Natural products and its derived active compounds may be achievable alternatives for the treatment of type 2 diabetes. In present study we investigated the antidiabetic potential of
and isolated bioactive compounds i.e., Plectranthoic acid A (PA-A) and 3,4,5,7-Flavantetrol (FL). Anti-hyperglycemic potential was evaluated
α-glucosidase, α-amylase and dipeptidyl peptidase 4 (DPP-4) assays. 5'AMP-activated kinase (AMPK) activation potential was assessed by using primary hepatocytes. Distribution of PA-A in different parts of
was evaluated by using rapid high-performance liquid chromatography (HPLC). Ethyl acetate fraction (FME) exhibited significant inhibition of α-glucosidase, α-amylase, and DPP-4, therefore, was selected for isolation of bioactive compounds. Among isolated compounds PA-A was more potent and possessed pleotropic inhibitory activity with IC
values of 39.5, 55.5, and 51.4 μM against α-glucosidase, α-amylase, and DPP-4, respectively. Our results showed that PA-A is also a potent activator of AMPK which is a central hub of metabolic regulation. Molecular docking studies confirmed the activity of PA-A against α-glucosidase, α-amylase, and DPP-4. Rapid HPLC method revealed that maximum concentration of PA-A is present in the stem (2.25 μg/mg dry weight) of
. Both
and
studies proposed that
and its isolated compound PA-A could be an important natural source for alleviating the symptoms of type 2 diabetes mellitus and we suggest that PA-A should be explored further for its ultimate use for the treatment of type 2 diabetes. |
---|---|
ISSN: | 1663-9812 1663-9812 |
DOI: | 10.3389/fphar.2018.01376 |