Machine Learning Use Cases in the Frequency Symbolic Method of Linear Periodically Time-Variable Circuits Analysis

This manuscript presents an analysis of machine learning (ML) usage in the Frequency Symbolic Method (FSM) to enhance the diagnosis of faults in parametric circuit analysis and optimization, with a particular focus on Linear Periodically Time-Variable (LPTV) systems. We put forth a few ML-based appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-09, Vol.14 (17), p.7926
Hauptverfasser: Shapovalov, Yuriy, Mankovskyy, Spartak, Bachyk, Dariya, Piwowar, Anna, Chruszczyk, Łukasz, Grzechca, Damian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This manuscript presents an analysis of machine learning (ML) usage in the Frequency Symbolic Method (FSM) to enhance the diagnosis of faults in parametric circuit analysis and optimization, with a particular focus on Linear Periodically Time-Variable (LPTV) systems. We put forth a few ML-based approaches for fault diagnosis (including anomaly detection), invisible feature detection, and the prediction of FSM output. These methodologies concentrate on identifying and diagnosing faults by evaluating particular ML techniques, extracting pertinent features, and determining the desired diagnostic outputs. The use cases of ML application considered in this paper demonstrate that machine learning can enhance fault detection and diagnosis, reduce human errors and identify previously unnoticed anomalies within the FSM framework. ML has never been used in FSM before, so the key aim of this paper is to consider possible use cases of AI application in FSM. Additionally, feature extraction, required as an input stage for the ML model, is proposed based on FSM peculiarities. This work can be considered a study of ML application in FSM.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14177926