Asymmetry in Cortical and Subcortical Structures of the Brain in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

Human cognitive and emotional functions are asymmetrical between the left and right hemispheres. In neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) patients, the absence of aberrant asymmetry might serve as a neuroanatomical marker of ADHD. However, few studies have estimated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychiatric disease and treatment 2021-01, Vol.17, p.493-502
Hauptverfasser: Chen, Sijian, Guan, Lin, Tang, Jie, He, Fan, Zheng, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human cognitive and emotional functions are asymmetrical between the left and right hemispheres. In neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) patients, the absence of aberrant asymmetry might serve as a neuroanatomical marker of ADHD. However, few studies have estimated abnormalities in cortical and subcortical asymmetry in children and adolescents of different ADHD subtypes. Data were from the results collected by the Peking University site in the "ADHD-200 sample" dataset, which comprised 31 eligible ADHD (20 inattentive ADHD (ADHD-I), 11 combined ADHD (ADHD-C)) and 31 matched typically developing (TD) individuals. The Asymmetry Indexes (AIs) in cortical thickness, cortical gray-matter volume and subcortical nucleus (SN) volume were calculated based on an automated surface-based approach. The differences in cortical thickness, cortical gray-matter volume, and SN volume AIs were evaluated among groups. We also analyzed the correlation between AIs and the severity of ADHD symptoms. Compared with the TD group, SN asymmetry in ADHD group did not reveal significant differences. Altered cortical asymmetry of different subtypes in ADHD groups was located in the orbitofrontal and anterior cingulate circuits, including the medial orbitofrontal, paracentral, pars triangularis, caudal anterior cingulate, isthmus cingulate, and superior frontal regions. In the comparisons, cortical gray-matter volume AIs were significantly different in the caudal anterior cingulate, isthmus cingulate, and superior frontal regions between ADHD-I and ADHD-C groups. There were significant correlations between the severity of ADHD symptoms and asymmetric measurements in medial orbitofrontal, paracentral and isthmus cingulate regions. These findings provide further evidence for the altered cortical morphological asymmetry in children and adolescents with ADHD, and these differences are associated (at least in part) with the severity of ADHD symptoms. Brain asymmetry could be an appropriate precursor of morphological alterations in neurodevelopmental disorders.
ISSN:1176-6328
1178-2021
1178-2021
DOI:10.2147/NDT.S292444