Comparative Study of Heat-Discharging Kinetics of Fe-Substituted Mn2O3/Mn3O4 Being Subjected to Long-Term Cycling for Thermochemical Energy Storage
The heat-discharging kinetics of an iron-substituted Mn2O3/Mn3O4 redox pair subjected to long-term thermal cycling tests using a temperature swing process at high temperatures was investigated for next-generation concentrated solar power plants equipped with thermochemical energy storage. The heat-d...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-04, Vol.16 (8), p.3367 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The heat-discharging kinetics of an iron-substituted Mn2O3/Mn3O4 redox pair subjected to long-term thermal cycling tests using a temperature swing process at high temperatures was investigated for next-generation concentrated solar power plants equipped with thermochemical energy storage. The heat-discharge mode kinetics for long-term thermal-cycled samples have never been reported. Additionally, comparisons of the heat-discharge mode kinetics for both long-term thermal-cycled and as-prepared samples have never been discussed. In terms of the reproducibility and sustainability of thermochemical energy storage, kinetic evaluations of samples with thermally stable morphologies subjected to long-term thermal cycling at high temperatures are important for next-generation solar thermal power plants. For the long-term thermal-cycled sample, the A2 model based on the Avrami–Erofeev reaction describes the discharging mode behavior in a fractional conversion range of 0–0.24, the contracting area (R2) model best fits in a fractional conversion range of 0.24–0.50, and the third-order (F3) model matches in a fractional conversion range of 0.50–0.70. For the as-prepared sample, the power-law (P2) model describes the behavior of the first part of the discharging mode, whereas the Avrami–Erofeev (A4) model best fits the last half of the discharging mode. The predicted theoretical models for both samples were compared with previous kinetic data. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16083367 |