Physical and Chemical Activation of Graphene-Derived Porous Nanomaterials for Post-Combustion Carbon Dioxide Capture
Activation is commonly used to improve the surface and porosity of different kinds of carbon nanomaterials: activated carbon, carbon nanotubes, graphene, and carbon black. In this study, both physical and chemical activations are applied to graphene oxide by using CO2 and KOH-based approaches, respe...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-09, Vol.11 (9), p.2419 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activation is commonly used to improve the surface and porosity of different kinds of carbon nanomaterials: activated carbon, carbon nanotubes, graphene, and carbon black. In this study, both physical and chemical activations are applied to graphene oxide by using CO2 and KOH-based approaches, respectively. The structural and the chemical properties of the prepared activated graphene are deeply characterized by means of scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and nitrogen adsorption. Temperature activation is shown to be a key parameter leading to enhanced CO2 adsorption capacity of the graphene oxide-based materials. The specific surface area is increased from 219.3 m2 g−1 for starting graphene oxide to 762.5 and 1060.5 m2 g−1 after physical and chemical activation, respectively. The performance of CO2 adsorption is gradually enhanced with the activation temperature for both approaches: for the best performances of a factor of 6.5 and 9 for physical and chemical activation, respectively. The measured CO2 capacities are of 27.2 mg g−1 and 38.9 mg g−1 for the physically and chemically activated graphene, respectively, at 25 °C and 1 bar. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano11092419 |