Repetitive sensorimotor mu-alpha phase-targeted afferent stimulation produces no phase-dependent plasticity related changes in somatosensory evoked potentials or sensory thresholds

Phase-dependent plasticity has been proposed as a neurobiological mechanism by which oscillatory phase-amplitude cross-frequency coupling mediates memory process in the brain. Mimicking this mechanism, real-time EEG oscillatory phase-triggered transcranial magnetic stimulation (TMS) has successfully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-10, Vol.18 (10), p.e0293546-e0293546
Hauptverfasser: Pillen, Steven, Shulga, Anastasia, Zrenner, Christoph, Ziemann, Ulf, Bergmann, Til Ole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phase-dependent plasticity has been proposed as a neurobiological mechanism by which oscillatory phase-amplitude cross-frequency coupling mediates memory process in the brain. Mimicking this mechanism, real-time EEG oscillatory phase-triggered transcranial magnetic stimulation (TMS) has successfully induced LTP-like changes in corticospinal excitability in the human motor cortex. Here we asked whether EEG phase-triggered afferent stimulation alone, if repetitively applied to the peaks, troughs, or random phases of the sensorimotor mu-alpha rhythm, would be sufficient to modulate the strength of thalamocortical synapses as assessed by changes in somatosensory evoked potential (SEP) N20 and P25 amplitudes and sensory thresholds (ST). Specifically, we applied 100 Hz triplets of peripheral electrical stimulation (PES) to the thumb, middle, and little finger of the right hand in pseudorandomized trials, with the afferent input from each finger repetitively and consistently arriving either during the cortical mu-alpha trough or peak or at random phases. No significant changes in SEP amplitudes or ST were observed across the phase-dependent PES intervention. We discuss potential limitations of the study and argue that suboptimal stimulation parameter choices rather than a general lack of phase-dependent plasticity in thalamocortical synapses are responsible for this null finding. Future studies should further explore the possibility of phase-dependent sensory stimulation.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0293546