Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation
Genomic evolution, transmission and pathogenesis of Streptococcus pneumoniae , an opportunistic human-adapted pathogen, is driven principally by nasopharyngeal carriage. However, little is known about genomic changes during natural colonisation. Here, we use whole-genome sequencing to investigate wi...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-07, Vol.11 (1), p.3442-3442, Article 3442 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genomic evolution, transmission and pathogenesis of
Streptococcus pneumoniae
, an opportunistic human-adapted pathogen, is driven principally by nasopharyngeal carriage. However, little is known about genomic changes during natural colonisation. Here, we use whole-genome sequencing to investigate within-host microevolution of naturally carried pneumococci in ninety-eight infants intensively sampled sequentially from birth until twelve months in a high-carriage African setting. We show that neutral evolution and nucleotide substitution rates up to forty-fold faster than observed over longer timescales in
S. pneumoniae
and other bacteria drives high within-host pneumococcal genetic diversity. Highly divergent co-existing strain variants emerge during colonisation episodes through real-time intra-host homologous recombination while the rest are co-transmitted or acquired independently during multiple colonisation episodes. Genic and intergenic parallel evolution occur particularly in antibiotic resistance, immune evasion and epithelial adhesion genes. Our findings suggest that within-host microevolution is rapid and adaptive during natural colonisation.
Streptococcus pneumoniae
is an opportunistic pathogen and asymptomatic colonization is a precursor for invasive disease. Here the authors show rapid within-host evolution of naturally acquired pneumococci in ninety-eight infants driven by high nucleotide substitution rates and intra-host homologous recombination. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-17327-w |