A Computational Model of Cn2 Profile Inversion for Atmospheric Laser Communication in the Vertical Path

In this paper, an atmospheric structure constant Cn2 model is proposed for evaluating the channel turbulence degree of atmospheric laser communication. First, we derive a mathematical model for the correlation between the atmospheric coherence length r0, the isoplanatic angle θ0 and Cn2 using the Hu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-06, Vol.23 (13), p.5874
Hauptverfasser: Yao, Haifeng, Cao, Yuxi, Wang, Weihao, Jiang, Qingfang, Cao, Jie, Hao, Qun, Liu, Zhi, Zhang, Peng, Chang, Yidi, Zhang, Guiyun, Geng, Tongtong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an atmospheric structure constant Cn2 model is proposed for evaluating the channel turbulence degree of atmospheric laser communication. First, we derive a mathematical model for the correlation between the atmospheric coherence length r0, the isoplanatic angle θ0 and Cn2 using the Hufnagel-Valley (HV) turbulence model. Then, we calculate the seven parameters of the HV model with the actual measured r0 and θ0 data as input quantities, so as to draw the Cn2 profile and the θ0 profile. The experimental results show that the fitted average Cn2 contours and single-day Cn2 contours have superior fitting performance compared with our historical data, and the daily correlation coefficient between the single-day computed θ0 contours and the measured θ0 contours is up to 87%. This result verifies the feasibility of the proposed method. The results validate the feasibility of the proposed method and provide a new technical tool for the inversion of turbulence Cn2 profiles.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23135874