Micro-sonic sensor technology enables enhanced grass height measurement by a Rising Plate Meter
Globally, the Rising Plate Meter (RPM) is a device used to measure compressed sward height, to enable estimation of herbage mass. Despite improved farm management practices aided by a variety of technological advances, the standard design of a RPM has remained relatively unchanged. Recently, however...
Gespeichert in:
Veröffentlicht in: | Information processing in agriculture 2019-06, Vol.6 (2), p.279-284 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Globally, the Rising Plate Meter (RPM) is a device used to measure compressed sward height, to enable estimation of herbage mass. Despite improved farm management practices aided by a variety of technological advances, the standard design of a RPM has remained relatively unchanged. Recently, however, a RPM utilising a micro-sonic sensor, with digital data capture capability via a Bluetooth communications link to a smart device application, has been developed. Here, we assess the comparable ability of both a standard cumulative ratchet counter RPM and the micro-sonic sensor RPM, to accurately and precisely measure fixed heights. Moreover, as correct allocation of grazing area requires accurate geolocation positioning, we assess the associated GPS technology. The micro-sonic sensor RPM was significantly more accurate for height capture than the cumulative ratchet counter RPM. Overall, across all heights, the cumulative ratchet counter RPM underestimated height by 7.68 ± 0.06 mm (mean ± SE). Alternatively, the micro-sonic sensor RPM overestimated height by 0.18 ± 0.08 mm. In relation to a practical applications, these discrepancies can result in an under- and overestimation of dry matter yield by 13.71% and 0.32% kilograms per hectare, respectively. The performance of the on-board GPS did not significantly differ from that of a tertiary device. Overall, the wireless technology, integrated mapping, and decision support tools offered by the innovative micro-sonic sensor RPM provides for a highly efficacious grassland management tool. |
---|---|
ISSN: | 2214-3173 2214-3173 |
DOI: | 10.1016/j.inpa.2018.08.009 |