A Combined Experimental and Modelling Study on Solubility of Calcium Oxalate Monohydrate at Physiologically Relevant pH and Temperatures

Accurate Calcium Oxalate Monohydrate (COM) solubility measurements are essential for elucidating the physiochemical mechanism behind the formation of kidney stones, nephrolithiasis. Yet the reported solubility values of COM in ultrapure water, arguably the simplest solvent relevant for nephrolithias...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2020-10, Vol.10 (10), p.924
Hauptverfasser: Ibis, Fatma, Dhand, Priya, Suleymanli, Sanan, van der Heijden, Antoine E. D. M., Kramer, Herman J. M., Eral, Huseyin Burak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate Calcium Oxalate Monohydrate (COM) solubility measurements are essential for elucidating the physiochemical mechanism behind the formation of kidney stones, nephrolithiasis. Yet the reported solubility values of COM in ultrapure water, arguably the simplest solvent relevant for nephrolithiasis, vary significantly depending on implemented method. To address this variation, we present an experimental study of the solubility of COM validated by a model based on the Debye–Hückel theory describing the solution chemistry and the complex formation. We also carefully monitor potential pseudopolymorphic/hydrate transitions during the solubility measurements with in-situ and ex-situ methods. Our results indicate that the solubility of COM in ultrapure water is a weak function of temperature. However, the measured solubility varies significantly in buffer solutions across physiologically relevant pH values at body temperature. The proposed model explains observed trends as a combined effect of ionic strength, protonation reactions, and soluble complex formation. Moreover, it predicts solubility of COM in buffer solutions remarkably well using our measurements in ultrapure water as input, demonstrating the consistency of presented approach. The presented study parleying experiments and modelling provides a solid stepping stone to extend the physiochemical understanding of nephrolithiasis to more realistic solutions laden with biological complexity.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst10100924