Minimally Invasive Surgical Technique through a Natural Anatomical Corridor for C1-C2 Screw Fixation
Objective: The atlantoaxial complex exhibits unique morphological and biomechanical characteristics. Trauma, tumors, and inflammatory or congenital diseases may compromise the stability of this joint. The purpose of this study was to describe a minimally invasive surgical (MIS) technique for C1-C2 f...
Gespeichert in:
Veröffentlicht in: | Journal of minimally invasive spine surgery and technique 2023-04, Vol.8 (1), p.55-63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective: The atlantoaxial complex exhibits unique morphological and biomechanical characteristics. Trauma, tumors, and inflammatory or congenital diseases may compromise the stability of this joint. The purpose of this study was to describe a minimally invasive surgical (MIS) technique for C1-C2 fixation through an anatomical corridor and to analyze the clinical, surgical, and fusion outcomes using this approach over a 15-year period.Methods: We present a MIS technique utilizing a natural anatomical corridor for C1-C2 screw fixation, which has been used at our institution since 2007. We analyzed the demographic characteristics and clinical results of the patients who underwent this procedure.Results: Forty-seven patients underwent C1-C2 MIS screw fixation during the study period, with 24 male patients and a median age of 66 years. The indication for surgery was atlantoaxial subluxation in 60% of cases and odontoid fracture in 23%. The median surgery duration was 130 minutes, with a median blood loss of 300 mL. There were no intraoperative complications, and only one patient presented with a superficial wound infection, which was successfully treated with antibiotics.Conclusion: The minimally invasive approach through a natural anatomical corridor to fuse the atlantoaxial joint using C1 lateral masses and C2 pedicle screws bilaterally has been demonstrated to be safe and effective. Preserving the occipital-cervical tension band provides additional biomechanical stability to the construct. |
---|---|
ISSN: | 2508-2043 2508-2043 |
DOI: | 10.21182/jmisst.2023.00661 |