Preparation of Mechanically Stable Superamphiphobic Coatings via Combining Phase Separation of Adhesive and Fluorinated SiO2 for Anti-Icing

Superamphiphobic coatings have widespread application potential in various fields, e.g., anti-icing, anti-corrosion and self-cleaning, but are seriously limited by poor mechanical stability. Here, mechanically stable superamphiphobic coatings were fabricated by spraying the suspension composed of ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-06, Vol.13 (12), p.1872
Hauptverfasser: Wei, Jinfei, Liang, Weidong, Zhang, Junping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superamphiphobic coatings have widespread application potential in various fields, e.g., anti-icing, anti-corrosion and self-cleaning, but are seriously limited by poor mechanical stability. Here, mechanically stable superamphiphobic coatings were fabricated by spraying the suspension composed of phase-separated silicone-modified polyester (SPET) adhesive microspheres with fluorinated silica (FD-POS@SiO2) on them. The effects of non-solvent and SPET adhesive contents on the superamphiphobicity and mechanical stability of the coatings were studied. Due to the phase separation of SPET and the FD-POS@SiO2 nanoparticles, the coatings present a multi-scale micro-/nanostructure. Combined with the FD-POS@SiO2 nanoparticles of low surface energy, the coatings present outstanding static and dynamic superamphiphobicity. Meanwhile, the coatings present outstanding mechanical stability due to the adhesion effect of SPET. In addition, the coatings present outstanding chemical and thermal stability. Moreover, the coatings can obviously delay the water freezing time and decrease the icing adhesion strength. We trust that the superamphiphobic coatings have widespread application potential in the anti-icing field.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13121872