The Formal Analysis on Negative Information Selections for Privacy Protection in Data Publishing

Negative information selection is an approach to protect the privacy by using negative information to replace original information. In this paper, we prove some bounds for negative information selection. Those bounds reveal the privacy protection strength of quantitative probability analysis. We als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Electrical and Computer Engineering 2024-02, Vol.2024, p.1-6
Hauptverfasser: Chen, Ping, Hu, Jingjing, Wu, Zhitao, Xiong, Ruoting, Ren, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Negative information selection is an approach to protect the privacy by using negative information to replace original information. In this paper, we prove some bounds for negative information selection. Those bounds reveal the privacy protection strength of quantitative probability analysis. We also analyzed the reconstruction probability of original information from available negative information. The formal analysis can specify the bound on the strength of security and utility for negative information selection. Besides, we simulate brute force attacks under different data leakage ratios. Specifically, we calculate the attacker’s guess times before and after the data leakage. Experimental results indicate that the data leakage of over 30% can put the original information in a dangerous situation. Furthermore, we found that the leakage possibility has little relevance to the number of elements in the full set, but it is influenced by the ratio of the leaked information.
ISSN:2090-0147
2090-0155
DOI:10.1155/2024/7486890