Polarized ZZ pairs in gluon fusion and vector boson fusion at the LHC
Pair production of helicity-polarized weak bosons (Vλ=Wλ±,Zλ) from gluon fusion (gg→VλVλ′′) and weak boson fusion (V1V2→VλVλ′′) are powerful probes of the Standard Model, new physics, and properties of quantum systems. Measuring cross sections of polarized processes is a chief objective of the Large...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2024-08, Vol.855 (C), p.138787, Article 138787 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pair production of helicity-polarized weak bosons (Vλ=Wλ±,Zλ) from gluon fusion (gg→VλVλ′′) and weak boson fusion (V1V2→VλVλ′′) are powerful probes of the Standard Model, new physics, and properties of quantum systems. Measuring cross sections of polarized processes is a chief objective of the Large Hadron Collider's (LHC) Run 3 and high luminosity programs, but progress is limited by the simulation tools that are presently available. We propose a method for computing polarized cross sections that works by directly modifying Feynman rules instead of (squared) amplitudes. The method is applicable to loop-induced processes, and can capture the interference between arbitrary polarization configurations, interference with non-resonant diagrams, as well as off-shell/finite-width effects. By construction, previous results that work at the (squared) amplitude level are recoverable. As a demonstration, we report the prospect of observing and studying polarized ZλZλ′ pairs when produced via gluon fusion and electroweak processes in final-states with four charged leptons at the LHC, using the new method to simulate the gluon fusion process. Our Feynman rules are publicly available as a set of Universal FeynRules Object libraries called SM_Loop_VPolar. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2024.138787 |