Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems

Mining activities are one of the main causes of land degradation around the world and reduce the quality of the surrounding ecosystems. Restoration approaches using different vegetations and reclamation methods have been implemented to address this issue. In this review, paper, different studies foc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2022-01, Vol.13 (1), p.63
Hauptverfasser: Misebo, Amisalu Milkias, Pietrzykowski, Marcin, Woś, Bartłomiej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mining activities are one of the main causes of land degradation around the world and reduce the quality of the surrounding ecosystems. Restoration approaches using different vegetations and reclamation methods have been implemented to address this issue. In this review, paper, different studies focusing on the effect of the restoration of mining sites on the accumulation of soil organic carbon (SOC) were analyzed. SOC in reclaimed mining soil (RMS) increased considerably after various restoration efforts were implemented. The amount of SOC accumulated in RMS was mostly influenced by the restoration age, vegetation type, and substrate or type of reclamation used. From the scientific papers analyzed, we found that SOC accumulation increases with restoration age; however, vegetation type and reclamation have varied effects. According to the review, the restoration of mine sites with vegetation resulted in a rate of SOC accumulation ranging from 0.37 to 5.68 Mg SOC ha−1 year−1. Climate conditions influenced the type of vegetation used for restoration. Regrading, liming, NPK fertilization, and seeding a mix of legumes and grasses were the most efficient reclamation techniques. Additionally, the use of grass and legume better facilitates the early accumulation of SOC compared with afforestation. Thus, the selection of appropriate tree species composition, reclamation treatments, and restoration age are the key factors for a high SOC accumulation rate.
ISSN:1999-4907
1999-4907
DOI:10.3390/f13010063