Novel Method of Remotely Monitoring the Face-Device Distance and Face Illuminance Using Mobile Devices: A Pilot Study
Specially developed software (app) was written for handheld electronic devices that uses the device camera and light detector for real-time monitoring of near-work distance and environmental lighting. A pilot study of this novel app employed children using tablet computers in a classroom. Measuremen...
Gespeichert in:
Veröffentlicht in: | Journal of ophthalmology 2019-01, Vol.2019 (2019), p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Specially developed software (app) was written for handheld electronic devices that uses the device camera and light detector for real-time monitoring of near-work distance and environmental lighting. A pilot study of this novel app employed children using tablet computers in a classroom. Measurements of face-device distance and face illuminance were obtained from two schools where tablets were used regularly. Children were divided randomly into a control group (CG) and intervention group (IG). The app was calibrated in a lab and configured to store average values every 20 seconds in a remote database. In both groups, the app recorded data only when a child’s face was present in the camera image. The app darkened the screen for the IG when the face-device distance was shorter than 40 cm. The total mean face-device distance was 36.8 ± 5.7 cm in CG and 47.2 ± 6.5 cm in IG. Children in IG had to accommodate approximately 0.6 D less when using their devices. The mean classroom face illuminance was 980 ± 350 lux in School #1 and 750 ± 400 lux in School #2. The novel method of remotely monitoring and controlling the face-device distance and illuminance can potentially open new paths for myopia prevention and myopia control. |
---|---|
ISSN: | 2090-004X 2090-0058 |
DOI: | 10.1155/2019/1946073 |