Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si) wafer bonded to silicon carbide (SiC). This novel sili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gammon, P.M., Chan, C.W., Gity, F., Trajkovic, T., Kilchytska, V., Fan, L., Pathirana, V., Camuso, G., Ben Ali, K., Flandre, D., Mawby, P.A., Gardner, J.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si) wafer bonded to silicon carbide (SiC). This novel silicon-on-silicon-carbide (Si/SiC) substrate solution promises to combine the benefits of silicon-on-insulator (SOI) technology (i.e device confinement, radiation tolerance, high and low temperature performance) with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance). Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/20171612003