Analyses of Crime Patterns in NIBRS Data Based on a Novel Graph Theory Clustering Method: Virginia as a Case Study
This paper suggests a novel clustering method for analyzing the National Incident-Based Reporting System (NIBRS) data, which include the determination of correlation of different crime types, the development of a likelihood index for crimes to occur in a jurisdiction, and the clustering of jurisdict...
Gespeichert in:
Veröffentlicht in: | TheScientificWorld 2014-01, Vol.2014 (2014), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper suggests a novel clustering method for analyzing the National Incident-Based Reporting System (NIBRS) data, which include the determination of correlation of different crime types, the development of a likelihood index for crimes to occur in a jurisdiction, and the clustering of jurisdictions based on crime type. The method was tested by using the 2005 assault data from 121 jurisdictions in Virginia as a test case. The analyses of these data show that some different crime types are correlated and some different crime parameters are correlated with different crime types. The analyses also show that certain jurisdictions within Virginia share certain crime patterns. This information assists with constructing a pattern for a specific crime type and can be used to determine whether a jurisdiction may be more likely to see this type of crime occur in their area. |
---|---|
ISSN: | 2356-6140 1537-744X 1537-744X |
DOI: | 10.1155/2014/492461 |