Multi-network collaborative lift-drag ratio prediction and airfoil optimization based on residual network and generative adversarial network

As compared with the computational fluid dynamics(CFD), the airfoil optimization based on deep learning significantly reduces the computational cost. In the airfoil optimization based on deep learning, due to the uncertainty in the neural network, the optimization results deviate from the true value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in bioengineering and biotechnology 2022-09, Vol.10, p.927064-927064
Hauptverfasser: Zhao, Xiaoyu, Wu, Weiguo, Chen, Wei, Lin, Yongshui, Ke, Jiangcen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As compared with the computational fluid dynamics(CFD), the airfoil optimization based on deep learning significantly reduces the computational cost. In the airfoil optimization based on deep learning, due to the uncertainty in the neural network, the optimization results deviate from the true value. In this work, a multi-network collaborative lift-to-drag ratio prediction model is constructed based on ResNet and penalty functions. Latin supersampling is used to select four angles of attack in the range of 2°–10° with significant uncertainty to limit the prediction error. Moreover, the random drift particle swarm optimization (RDPSO) algorithm is used to control the prediction error. The experimental results show that multi-network collaboration significantly reduces the error in the optimization results. As compared with the optimization based on a single network, the maximum error of multi-network coordination in single angle of attack optimization reduces by 16.0%. Consequently, this improves the reliability of airfoil optimization based on deep learning.
ISSN:2296-4185
2296-4185
DOI:10.3389/fbioe.2022.927064