Grain-Boundary Structural Relaxation in Sb_{2}Se_{3} Thin-Film Photovoltaics

Grain boundaries play an important role in the efficiency of thin-film photovoltaics, where the absorber layer is invariably polycrystalline. Density-functional-theory simulations have previously identified a “self-healing” mechanism in Sb_{2}Se_{3} that passivates the grain boundaries. During “self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PRX energy 2024-02, Vol.3 (1), p.013006
Hauptverfasser: R.A. Lomas-Zapata, K.P. McKenna, Q.M. Ramasse, R.E. Williams, L.J. Phillips, K. Durose, J.D. Major, B.G. Mendis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grain boundaries play an important role in the efficiency of thin-film photovoltaics, where the absorber layer is invariably polycrystalline. Density-functional-theory simulations have previously identified a “self-healing” mechanism in Sb_{2}Se_{3} that passivates the grain boundaries. During “self-healing,” extensive structural relaxation at the grain boundary removes the band-gap electronic defect states that give rise to high carrier recombination rates. In this work, lattice imaging in a transmission electron microscope is used to uncover evidence for the theoretically proposed structural relaxation in Sb_{2}Se_{3}. The strain measured along the [010] crystal direction is found to be dependent on the nature of the grain-boundary plane. For a (010) grain boundary, the strain and structural relaxation is minimal, since no covalent bonds are broken by termination of the grain. On the other hand, strains of up to approximately 4% extending approximately 2 nm into the grain interior are observed for a (041) grain boundary, where grain termination results in significant structural relaxation due to the ideal atomic coordination being disrupted. These results are consistent with theory and suggest that Sb_{2}Se_{3} may have a high level of grain-boundary-defect tolerance.
ISSN:2768-5608
DOI:10.1103/PRXEnergy.3.013006