DeepPOSE: Detecting GPS spoofing attack via deep recurrent neural network

The Global Positioning System (GPS) has become a foundation for most location-based services and navigation systems, such as autonomous vehicles, drones, ships, and wearable devices. However, it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital communications and networks 2022-10, Vol.8 (5), p.791-803
Hauptverfasser: Jiang, Peng, Wu, Hongyi, Xin, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Global Positioning System (GPS) has become a foundation for most location-based services and navigation systems, such as autonomous vehicles, drones, ships, and wearable devices. However, it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools. Pervasive tools, such as Fake GPS, Lockito, and software-defined radio, enable ordinary users to hijack and report fake GPS coordinates and cheat the monitoring server without being detected. Furthermore, it is also a challenge to get accurate sensor readings on mobile devices because of the high noise level introduced by commercial motion sensors. To this end, we propose DeepPOSE, a deep learning model, to address the noise introduced in sensor readings and detect GPS spoofing attacks on mobile platforms. Our design uses a convolutional and recurrent neural network to reduce the noise, to recover a vehicle's real-time trajectory from multiple sensor inputs. We further propose a novel scheme to map the constructed trajectory from sensor readings onto the Google map, to smartly eliminate the accumulation of errors on the trajectory estimation. The reconstructed trajectory from sensors is then used to detect the GPS spoofing attack. Compared with the existing method, the proposed approach demonstrates a significantly higher degree of accuracy for detecting GPS spoofing attacks.
ISSN:2352-8648
2352-8648
DOI:10.1016/j.dcan.2021.09.006