Complete Asymptotics for Solution of Singularly Perturbed Dynamical Systems with Single Well Potential
We consider a singularly perturbed boundary value problem ( − ε 2 ∆ + ∇ V · ∇ ) u ε = 0 in Ω , u ε = f on ∂ Ω , f ∈ C ∞ ( ∂ Ω ) . The function V is supposed to be sufficiently smooth and to have the only minimum in the domain Ω . This minimum can degenerate. The potential V has no other stationary p...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-06, Vol.8 (6), p.949 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a singularly perturbed boundary value problem ( − ε 2 ∆ + ∇ V · ∇ ) u ε = 0 in Ω , u ε = f on ∂ Ω , f ∈ C ∞ ( ∂ Ω ) . The function V is supposed to be sufficiently smooth and to have the only minimum in the domain Ω . This minimum can degenerate. The potential V has no other stationary points in Ω and its normal derivative at the boundary is non-zero. Such a problem arises in studying Brownian motion governed by overdamped Langevin dynamics in the presence of a single attracting point. It describes the distribution of the points at the boundary ∂ Ω , at which the trajectories of the Brownian particle hit the boundary for the first time. Our main result is a complete asymptotic expansion for u ε as ε → + 0 . This asymptotic is a sum of a term K ε Ψ ε and a boundary layer, where Ψ ε is the eigenfunction associated with the lowest eigenvalue of the considered problem and K ε is some constant. We provide complete asymptotic expansions for both K ε and Ψ ε ; the boundary layer is also an infinite asymptotic series power in ε . The error term in the asymptotics for u ε is estimated in various norms. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8060949 |