Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings

The pathological identification of lymph node (LN) metastasis is demanding and tedious. Although convolutional neural networks (CNNs) possess considerable potential in improving the process, the ultrahigh-resolution of whole slide images hinders the development of a clinically applicable solution. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-06, Vol.13 (1), p.3347-3347, Article 3347
Hauptverfasser: Huang, Shih-Chiang, Chen, Chi-Chung, Lan, Jui, Hsieh, Tsan-Yu, Chuang, Huei-Chieh, Chien, Meng-Yao, Ou, Tao-Sheng, Chen, Kuang-Hua, Wu, Ren-Chin, Liu, Yu-Jen, Cheng, Chi-Tung, Huang, Yu-Jen, Tao, Liang-Wei, Hwu, An-Fong, Lin, I-Chieh, Hung, Shih-Hao, Yeh, Chao-Yuan, Chen, Tse-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pathological identification of lymph node (LN) metastasis is demanding and tedious. Although convolutional neural networks (CNNs) possess considerable potential in improving the process, the ultrahigh-resolution of whole slide images hinders the development of a clinically applicable solution. We design an artificial-intelligence-assisted LN assessment workflow to facilitate the routine counting of metastatic LNs. Unlike previous patch-based approaches, our proposed method trains CNNs by using 5-gigapixel images, obviating the need for lesion-level annotations. Trained on 5907 LN images, our algorithm identifies metastatic LNs in gastric cancer with a slide-level area under the receiver operating characteristic curve (AUC) of 0.9936. Clinical experiments reveal that the workflow significantly improves the sensitivity of micrometastasis identification (81.94% to 95.83%, P  
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30746-1