Numerical Simulation of the Dispersion of Exhaled Aerosols from a Manikin with a Realistic Upper Airway
Basic analysis of the flow field and aerosol deposition under different conditions when a spreader contains an upper airway tract is important to accurately predict the transmission of virus-laden aerosols. An upper airway was included to simulate aerosol transport and deposition. A flow field was s...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2022-12, Vol.13 (12), p.2050 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Basic analysis of the flow field and aerosol deposition under different conditions when a spreader contains an upper airway tract is important to accurately predict the transmission of virus-laden aerosols. An upper airway was included to simulate aerosol transport and deposition. A flow field was simulated by the Transition SST model for validation. The simulation results show that, in the absence of the upper airway structure, an over-predicted aerosol deposition rate will occur. Higher upper-stream air velocity enhanced the intensity but added complexity to the recirculating flow between two manikins and increased the deposition rate of aerosol in the disseminator. A low-temperature environment can reduce the deposition rate of aerosol particles on the body of the disseminator due to a strong thermal plume. Therefore, the structure of the upper airway should be considered when predicting respiratory aerosol in order to increase the accuracy of aerosol propagation prediction. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos13122050 |