Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications
Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin ch...
Gespeichert in:
Veröffentlicht in: | Metabolites 2024-12, Vol.14 (12), p.717 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow. Regular red blood cell transfusions are the standard treatment for thalassemia. However, these transfusions can lead to increased iron overload, which can impair vital systems such as the liver, heart, ovaries, and endocrine system. Focusing on female reproductive endocrinology, recurrent blood transfusions can cause iron accumulation in the pituitary and hypothalamus, leading to hypogonadotropic hypogonadism (HH), the most common endocrinopathy in these patients, affecting 40-91% of women. Recurrent transfusions and the resulting iron overload can also lead to oxidative stress and ovarian damage in patients with beta-thalassemia major (BTM). Despite advancements in iron chelation therapy, hypothalamic-pituitary damage associated with HH contributes to subfertility and sexual dysfunction, often with little to no recovery. In women exposed to gonadotoxic drugs, particularly those with BTM, anti-Mullerian hormone (AMH)-a marker of ovarian reserve-is frequently used to assess ovarian damage. This review aims to explore the pathophysiology of β-thalassemia and its major clinical manifestations, with a focus on endocrine complications and their impact on ovarian reserve. It also investigates how metabolomics can provide insights into the disease's metabolic alterations and inform current and emerging therapeutic strategies to mitigate complications and optimize patient outcomes, potentially leading to more effective and personalized treatments. |
---|---|
ISSN: | 2218-1989 2218-1989 |
DOI: | 10.3390/metabo14120717 |