Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem
Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differ...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-09, Vol.13 (1), p.15566-15566, Article 15566 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differential equations. A major area of research on PINNs is the application to coupled partial differential equations in particular, and a general breakthrough is still lacking. In coupled equations, the optimization operates in a critical conflict between boundary conditions and the underlying equations, which often requires either many iterations or complex schemes to avoid trivial solutions and to achieve convergence. We provide empirical evidence for the mitigation of bad initial conditioning in PINNs for solving one-dimensional consolidation problems of porous media through the introduction of affine transformations after the classical output layer of artificial neural network architectures, effectively accelerating the training process. These affine physics-informed neural networks (AfPINNs) then produce nontrivial and accurate field solutions even in parameter spaces with diverging orders of magnitude. On average, AfPINNs show the ability to improve the
L
2
relative error by
64.84
%
after 25,000 epochs for a one-dimensional consolidation problem based on Biot’s theory, and an average improvement by
58.80
%
with a transfer approach to the theory of porous media. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-42141-x |