Synthesis, characterization, and antiparasitic effects of zinc oxide nanoparticles-eugenol nanosuspension against Toxoplasma gondii infection
In this study, zinc oxide nanoparticles-coated with eugenol (ZnO@Eug) were synthesized and evaluated as a nanosuspension (NSus) formulation against Toxoplasma gondii in vitro and in vivo. An anti-Toxoplasma activity assay for ZnO@Eug NSus was conducted in vitro, ex vivo, and in vivo. FTIR spectrosco...
Gespeichert in:
Veröffentlicht in: | Heliyon 2023-08, Vol.9 (8), p.e19295-e19295, Article e19295 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, zinc oxide nanoparticles-coated with eugenol (ZnO@Eug) were synthesized and evaluated as a nanosuspension (NSus) formulation against Toxoplasma gondii in vitro and in vivo.
An anti-Toxoplasma activity assay for ZnO@Eug NSus was conducted in vitro, ex vivo, and in vivo. FTIR spectroscopy confirmed the formation of ZnO@Eug NSus by detecting several functional groups involved; EDX and SEM demonstrated the grain of ZnO-NPs embedded with Eug and compositional purity.
Surface charge (ZP) and size distribution (DLS) of ZnO@Eug NSus were determined to be −22.7 mV and 109.6 nm, respectively. According to the release kinetics, approximately 60% of the ZnO-NPs and Eug were released in the first 45 min. In the cytotoxicity assay, ZnO-NPs, Eug, and ZnO@Eug NSus had IC50 values of 71.85, 22.39, and 2.02 mg/mL, respectively. The therapeutic efficacy of ZnO@Eug against T. gondii was 56.3%, which was not significantly different from that of spiramycin (58.9%) (Positive-control). The tissue tachyzoites in the liver, spleen, and peritoneum were less than 50% in groups treated with Eug, spiramycin, and ZnO@Eug NSus compared to the control. ZnO@Eug-treated groups showed a survival rate of up to 13 days.
The ZnO@Eug NSus demonstrated antiparasitic activity against T. gondii with minimal toxic effects and high efficiency in increasing the survival of infected mice. The nanoformulations of ZnO-NPs incorporated with Eug could, in the future, be considered for treating toxoplasmosis in humans and animals if a detailed study was conducted to determine the precise dose and measure side effects. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e19295 |