Lityum iyon piller için kalay (II) oksit kompozit anot elektrotlarının üretimi ve karakterizasyonu
In this study, the core component of the composite, tin (II) oxide powders synthesized through a facile chemical reduction methods for Li-ion batteries. As the shell structure, surfaces of the as-synthesized tin (II) oxide particles were coated with carbon through microwave assisted carburization pr...
Gespeichert in:
Veröffentlicht in: | Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017-04, Vol.21 (2), p.150-156 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the core component of the composite, tin (II) oxide powders synthesized through a facile chemical reduction methods for Li-ion batteries. As the shell structure, surfaces of the as-synthesized tin (II) oxide particles were coated with carbon through microwave assisted carburization process. The surface morphologies and phase components of the as-synthesized tin (II) oxide/carbon composites were investigated via scanning electron microscopy and X-ray diffraction methods, respectively. CR2016 type coin cells were prepared by using tin (II) oxide/carbon composite powders and electrochemical tests were performed at room temperature via 8-channel MTI BST8‒MA electrochemical test station between 10 mV and 2.5 V potential range by applying fixed 1 C state of charge conditions. The results have shown that tin (II) oxide/carbon composite structure have significantly improved the specific capacities to 396 mAh g-1 after 100 cycles. |
---|---|
ISSN: | 1301-4048 2147-835X |
DOI: | 10.16984/saufenbilder.296995 |