Parallel Computation of EM Backscattering from Large Three-Dimensional Sea Surface with CUDA

An efficient parallel computation using graphics processing units (GPUs) is developed for studying the electromagnetic (EM) backscattering characteristics from a large three-dimensional sea surface. A slope-deterministic composite scattering model (SDCSM), which combines the quasi-specular scatterin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-10, Vol.18 (11), p.3656
Hauptverfasser: Linghu, Longxiang, Wu, Jiaji, Wu, Zhensen, Wang, Xiaobing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient parallel computation using graphics processing units (GPUs) is developed for studying the electromagnetic (EM) backscattering characteristics from a large three-dimensional sea surface. A slope-deterministic composite scattering model (SDCSM), which combines the quasi-specular scattering of Kirchhoff Approximation (KA) and Bragg scattering of the two-scale model (TSM), is utilized to calculate the normalized radar cross section (NRCS in dB) of the sea surface. However, with the improvement of the radar resolution, there will be millions of triangular facets on the large sea surface which make the computation of NRCS time-consuming and inefficient. In this paper, the feasibility of using NVIDIA Tesla K80 GPU with four compute unified device architecture (CUDA) optimization strategies to improve the calculation efficiency of EM backscattering from a large sea surface is verified. The whole GPU-accelerated SDCSM calculation takes full advantage of coalesced memory access, constant memory, fast math compiler options, and asynchronous data transfer. The impact of block size and the number of registers per thread is analyzed to further improve the computation speed. A significant speedup of 748.26x can be obtained utilizing a single GPU for the GPU-based SDCSM implemented compared with the CPU-based counterpart performing on the Intel(R) Core(TM) i5-3450.
ISSN:1424-8220
1424-8220
DOI:10.3390/s18113656