NLRP3 inflammasome inhibition of OP9 cells enhance therapy for inflammatory bowel disease
Mesenchymal stem cells (MSCs) are becoming more popular in therapy. Therefore, in-depth studies on mesenchymal stem cells in therapy are urgently needed. However, the difficulty in culturing and propagating MSCs in vitro complicates potential studies on MSCs in a murine model. OP9 cells are a stroma...
Gespeichert in:
Veröffentlicht in: | Heliyon 2023-07, Vol.9 (7), p.e18038-e18038, Article e18038 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mesenchymal stem cells (MSCs) are becoming more popular in therapy. Therefore, in-depth studies on mesenchymal stem cells in therapy are urgently needed. However, the difficulty in culturing and propagating MSCs in vitro complicates potential studies on MSCs in a murine model. OP9 cells are a stromal cell line from mouse bone marrow, which have similar characteristics and functions to MSCs and can maintain their original characteristics. Because of these properties, OP9 cells have become a suitable substitute for research on MSCs. Previously, we have found that MSCs can cure inflammatory bowel disease in mice. In this study, we aimed to investigate whether OP9 cells can functionally regulate and alleviate inflammatory diseases. We evaluated the therapeutic effect of OP9 cells in the mouse model of inflammatory bowel disease and found OP9 cells were able to ameliorate inflammatory bowel disease. We explored the existence of NLRP3 inflammasome in OP9 cells, and showed better therapeutic effects when the NLRP3 inflammasome was suppressed. Thus, OP9 cell line is similar to MSCs in characteristic and function, and is an ideal substitute for MSCs research. The preliminary exploration of the inflammasome system in OP9 cells lays a theoretical and methodological foundation for further study of MSCs. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e18038 |