Document-Level Event Argument Extraction with Sparse Representation Attention

Document-level Event Argument Extraction (DEAE) aims to extract structural event knowledge composed of arguments and roles beyond the sentence level. Existing methods mainly focus on designing prompts and using Abstract Meaning Representation (AMR) graph structure as additional features to enrich ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-09, Vol.12 (17), p.2636
Hauptverfasser: Zhang, Mengxi, Chen, Honghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Document-level Event Argument Extraction (DEAE) aims to extract structural event knowledge composed of arguments and roles beyond the sentence level. Existing methods mainly focus on designing prompts and using Abstract Meaning Representation (AMR) graph structure as additional features to enrich event argument representation. However, two challenges still remain: (1) the long-range dependency between event trigger and event arguments and (2) the distracting context in the document towards an event that can mislead the argument classification. To address these issues, we propose a novel document-level event argument extraction model named AMR Parser and Sparse Representation (APSR). Specifically, APSR sets inter- and intra-sentential encoders to capture the contextual information in different scopes. Especially, in the intra-sentential encoder, APSR designs three types of sparse event argument attention mechanisms to extract the long-range dependency. Then, APSR constructs AMR semantic graphs, which capture the interactions among concepts well. Finally, APSR fuses the inter- and intra-sentential representations and predicts what role a candidate span plays. Experimental results on the RAMS and WikiEvents datasets demonstrate that APSR achieves a superior performance compared with competitive baselines in terms of F1 by 1.27% and 3.12%, respectively.
ISSN:2227-7390
DOI:10.3390/math12172636