Capture and Ex-Situ Analysis of Environmental Biofilms in Livestock Buildings

Little information about biofilm microbial communities on the surface of livestock buildings is available yet. While these spatially organized communities proliferate in close contact with animals and can harbor undesirable microorganisms, no standardized methods have been described to sample them n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2022-01, Vol.10 (1), p.2
Hauptverfasser: Guéneau, Virgile, Rodiles, Ana, Piard, Jean-Christophe, Frayssinet, Bastien, Castex, Mathieu, Plateau-Gonthier, Julia, Briandet, Romain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Little information about biofilm microbial communities on the surface of livestock buildings is available yet. While these spatially organized communities proliferate in close contact with animals and can harbor undesirable microorganisms, no standardized methods have been described to sample them non-destructively. We propose a reproducible coupon-based capture method associated with a set of complementary ex-situ analysis tools to describe the major features of those communities. To demonstrate the biofilm dynamics in a pig farm building, we analyzed the coupons on polymeric and metallic materials, as representative of these environments, over 4 weeks. Confocal laser scanning microscopy (CLSM) revealed a rapid coverage of the coupons with a thick layer of biological material and the existence of dispersed clusters of active metabolic microorganisms. After detaching the cells from the coupons, counts to quantify the CFU/cm were done with high reproducibility. High-throughput sequencing of the 16S rRNA V3-V4 region shows bacterial diversity profiles in accordance with reported bacteria diversity in pig intestinal ecosystems and reveals differences between materials. The coupon-based methodology allows us to deepen our knowledge on biofilm structure and composition on the surface of a pig farm and opens the door for application in different types of livestock buildings.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms10010002