Testing the limits of the global instability index

The global instability index (GII) is a computationally inexpensive bond valence-based metric originally designed to evaluate the total bond strain in a crystal. Recently, the GII has gained popularity as a feature of data-driven models in materials research. Although prior studies have proven that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2023-10, Vol.11 (10), p.101108-101108-10
Hauptverfasser: Miller, Kyle D., Rondinelli, James M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The global instability index (GII) is a computationally inexpensive bond valence-based metric originally designed to evaluate the total bond strain in a crystal. Recently, the GII has gained popularity as a feature of data-driven models in materials research. Although prior studies have proven that GII is an effective predictor of structural distortions and decomposition energy when applied to small datasets, the wider use of GII as a global indicator of structural stability has yet to be evaluated. To that end, we compute GII for thousands of compounds in inorganic structure databases and partition compounds by chemical interactions underlying their stability to understand the GII values and their variations. Our results show that the GII captures relative chemical trends, such as electronegativity, even beyond the intended domain of strongly ionic compounds. However, we also find that GII magnitudes vary significantly with factors such as chemistry (cation–anion identities and bond character), geometry (connectivity), data source, and model bias, making GII suitable for comparisons within controlled datasets but unsuitable as an absolute, universal metric for structural feasibility.
ISSN:2166-532X
2166-532X
DOI:10.1063/5.0140480