Optimization of Finite-Differencing Kernels for Numerical Relativity Applications
A simple optimization strategy for the computation of 3D finite-differencing kernels on many-cores architectures is proposed. The 3D finite-differencing computation is split direction-by-direction and exploits two level of parallelism: in-core vectorization and multi-threads shared-memory paralleliz...
Gespeichert in:
Veröffentlicht in: | Journal of low power electronics and applications 2018-06, Vol.8 (2), p.15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple optimization strategy for the computation of 3D finite-differencing kernels on many-cores architectures is proposed. The 3D finite-differencing computation is split direction-by-direction and exploits two level of parallelism: in-core vectorization and multi-threads shared-memory parallelization. The main application of this method is to accelerate the high-order stencil computations in numerical relativity codes. Our proposed method provides substantial speedup in computations involving tensor contractions and 3D stencil calculations on different processor microarchitectures, including Intel Knight Landing. |
---|---|
ISSN: | 2079-9268 2079-9268 |
DOI: | 10.3390/jlpea8020015 |