Weighted omega-Restricted One Counter Automata
Let $S$ be a complete star-omega semiring and $\Sigma$ be an alphabet. For a weighted $\omega$-restricted one-counter automaton $\mathcal{C}$ with set of states $\{1, \dots, n\}$, $n \geq 1$, we show that there exists a mixed algebraic system over a complete semiring-semimodule pair ${((S \ll \Sigma...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2018-03, Vol.14, Issue 1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $S$ be a complete star-omega semiring and $\Sigma$ be an alphabet. For a weighted $\omega$-restricted one-counter automaton $\mathcal{C}$ with set of states $\{1, \dots, n\}$, $n \geq 1$, we show that there exists a mixed algebraic system over a complete semiring-semimodule pair ${((S \ll \Sigma^* \gg)^{n\times n}, (S \ll \Sigma^{\omega}\gg)^n)}$ such that the behavior $\Vert\mathcal{C} \Vert$ of $\mathcal{C}$ is a component of a solution of this system. In case the basic semiring is $\mathbb{B}$ or $\mathbb{N}^{\infty}$ we show that there exists a mixed context-free grammar that generates $\Vert\mathcal{C} \Vert$. The construction of the mixed context-free grammar from $\mathcal{C}$ is a generalization of the well-known triple construction in case of restricted one-counter automata and is called now triple-pair construction for $\omega$-restricted one-counter automata. |
---|---|
ISSN: | 1860-5974 |
DOI: | 10.23638/LMCS-14(1:21)2018 |