Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms

This research work proposed a hybrid model to maximize energy consumption and maximize user comfort in residential buildings. The proposed model consists of two widely used optimization algorithms named the firefly algorithm (FA) and genetic algorithm (GA). The hybridization of two optimization appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-09, Vol.13 (17), p.4363
Hauptverfasser: Wahid, Fazli, Fayaz, Muhammad, Aljarbouh, Ayman, Mir, Masood, Aamir, Muhammad, Imran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research work proposed a hybrid model to maximize energy consumption and maximize user comfort in residential buildings. The proposed model consists of two widely used optimization algorithms named the firefly algorithm (FA) and genetic algorithm (GA). The hybridization of two optimization approaches results in a better optimization process, leading to better performance of the process in terms of minimum power consumption and maximum occupant’s comfort. The inputs of the optimization model are illumination, temperature, and air quality from the user, in addition with the external environment. The outputs of the proposed model are the optimized values of illumination, temperature, and air quality, which are, in turn, used in computing the values of user comfort. After the computation of the comfort index, these values enter the fuzzy controllers, which are used to adjust the cooling/heating system, illumination system, and ventilation system according to the occupant’s requirement. A user-friendly environment for power consumption minimization and user comfort maximization using data from different sensors, user, processes, power control systems, and various actuators is proposed in this work. The results obtained from the hybrid model have been compared with many state-of-the-art optimization algorithms. The final results revealed that the proposed approach performed better as compared to the standard optimization techniques.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13174363