High-Speed Measurement-Device-Independent Quantum Key Distribution with Integrated Silicon Photonics
Measurement-device-independent quantum key distribution (MDI QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive measurement devices are placed in the central untru...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2020-08, Vol.10 (3), p.031030, Article 031030 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurement-device-independent quantum key distribution (MDI QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive measurement devices are placed in the central untrusted relay and each user requires only a low-cost transmitter, such as an integrated photonic chip. Here, we experimentally demonstrate a 1.25-GHz silicon photonic chip-based MDI QKD system using polarization encoding. The photonic chip transmitters integrate the necessary encoding components for a standard QKD source. We implement random modulations of polarization states and decoy intensities, and demonstrate a finite-key secret rate of31bit/sover 36-dB channel loss (or 180-km standard fiber). This key rate is higher than state-of-the-art MDI QKD experiments. The results show that silicon photonic chip-based MDI QKD, benefiting from miniaturization, low-cost manufacture, and compatibility with CMOS microelectronics, is a promising solution for future quantum secure networks. |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.10.031030 |