A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion

Strong and ductile materials that have high resistance to corrosion and hydrogen embrittlement are rare and yet essential for realizing safety-critical energy infrastructures, hydrogen-based industries, and transportation solutions. Here we report how we reconcile these constraints in the form of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-06, Vol.11 (1), p.3081-3081, Article 3081
Hauptverfasser: Luo, Hong, Sohn, Seok Su, Lu, Wenjun, Li, Linlin, Li, Xiaogang, Soundararajan, Chandrahaasan K., Krieger, Waldemar, Li, Zhiming, Raabe, Dierk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strong and ductile materials that have high resistance to corrosion and hydrogen embrittlement are rare and yet essential for realizing safety-critical energy infrastructures, hydrogen-based industries, and transportation solutions. Here we report how we reconcile these constraints in the form of a strong and ductile CoNiV medium-entropy alloy with face-centered cubic structure. It shows high resistance to hydrogen embrittlement at ambient temperature at a strain rate of 10 −4  s −1 , due to its low hydrogen diffusivity and the deformation twinning that impedes crack propagation. Moreover, a dense oxide film formed on the alloy’s surface reduces the hydrogen uptake rate, and provides high corrosion resistance in dilute sulfuric acid with a corrosion current density below 7 μA cm −2 . The combination of load carrying capacity and resistance to harsh environmental conditions may qualify this multi-component alloy as a potential candidate material for sustainable and safe infrastructures and devices. Strong and ductile materials with resistance to both corrosion and hydrogen embrittlement remain rare and yet are essential for hydrogen-propelled industries. Here, the authors show that a CoNiV medium-entropy alloy with face-centered cubic structure fulfils all the above criteria.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16791-8