Heat Capacity of Decagonal and Icosahedral Quasicrystalline Phases at High Temperatures

The paper deals with the calculations of heat capacity of quasicrystalline decagonal Al69Co21Ni10 and icosahedral Al63Cu25Fe12 quasicrystalline phases of Al–Co–Ni and Al–Cu–Fe alloys, respectively. According to the Gruneisen law, heat capacity is an energy characteristic, which reflects the phases’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fìzika ì hìmìâ tverdogo tìla (Online) 2020-06, Vol.21 (2), p.260-265
Hauptverfasser: Syrovatko, Yu. V., Levkovich, O. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper deals with the calculations of heat capacity of quasicrystalline decagonal Al69Co21Ni10 and icosahedral Al63Cu25Fe12 quasicrystalline phases of Al–Co–Ni and Al–Cu–Fe alloys, respectively. According to the Gruneisen law, heat capacity is an energy characteristic, which reflects the phases’ resistance to failure. For calculations of the heat capacity, structure of quasicrystalline phases is considered in the model representation of anisotropic crystals. As a result, it is found that the heat capacity of quasicrystalline phases at high temperatures is the excessive one, i.e. it exceeds the Dulong-Petit value. Therefore, quasicrystalline phases at high temperatures are more stable, than the crystalline phase. For the decagonal quasicrystalline phase, heat capacity is more than 3R in the temperature range of ~480–1500 К, and for the icosahedral quasicrystalline phase – in the temperature range of ~380–1120 К. It follows that decagonal phases remain stable at high temperatures at which the icosahedral phases are destroyed.
ISSN:1729-4428
2309-8589
DOI:10.15330/pcss.21.2.260-265