New ideas for brain modelling 5
This paper describes a process for combining patterns and features, to guide a search process and make predictions. It is based on the functionality that a human brain might have, which is a highly distributed network of simple neuronal components that can apply some level of matching and cross-refe...
Gespeichert in:
Veröffentlicht in: | AIMS Biophysics 2021-01, Vol.8 (1), p.41-56 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes a process for combining patterns and features, to guide a search process and make predictions. It is based on the functionality that a human brain might have, which is a highly distributed network of simple neuronal components that can apply some level of matching and cross-referencing over retrieved patterns. The process uses memory in a dynamic way and it is directed through the pattern matching. The paper firstly describes the mechanisms for neuronal search, memory and prediction. The paper then presents a formal language (Cognitive Process Language) for defining cognitive processes, that is, pattern-based sequences and transitions. The language can define an outer framework for concept sets that are linked to perform the act. The language also has a mathematical basis, allowing for the rule construction to be consistent. The CPL is novel in some ways. Firstly, it uses 3 entities for each statement, where the object source is also required. This roots the act and allows for cross-referencing that can create a behaviour script automatically. It also allows natural cycles to be derived from the script that can define the brain-like processes. Now, both static memory and dynamic process hierarchies can be built as tree structures. A theory about linking can suggest that nodes in different regions link together when generally they represent the same thing. Keywords: cognitive model; behaviour; formal description; prediction; search |
---|---|
ISSN: | 2377-9098 |
DOI: | 10.3934/biophy.2021003 |