Exceptional ring of the buoyancy instability in stars

We reveal properties of global modes of linear buoyancy instability in stars, characterized by the celebrated Schwarzschild criterion, using non-Hermitian topology. We identify a ring of exceptional points of order 4 that originates from the pseudo-Hermitian and pseudochiral symmetries of the system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2024-03, Vol.6 (1), p.L012055, Article L012055
Hauptverfasser: Leclerc, Armand, Jezequel, Lucien, Perez, Nicolas, Bhandare, Asmita, Laibe, Guillaume, Delplace, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We reveal properties of global modes of linear buoyancy instability in stars, characterized by the celebrated Schwarzschild criterion, using non-Hermitian topology. We identify a ring of exceptional points of order 4 that originates from the pseudo-Hermitian and pseudochiral symmetries of the system. The ring results from the merging of a dipole of degeneracy points in the Hermitian stably-stratified counterpart of the problem. Its existence is related to spherically symmetric unstable modes. We obtain the conditions for which convection grows over such radial modes. Those are met at early stages of low-mass stars formation. We finally show that a topological wave is robust to the presence of convective regions by reporting the presence of a mode transiting between the wavebands in the non-Hermitian problem, strengthening their relevance for asteroseismology.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.6.L012055