Advanced polymeric matrix utilizing nanostructured bismuth and tungsten oxides for gamma rays shielding

In this study, the shielding properties of novel polymer composites, developed by integrating glycidyl methacrylate with nanoparticles of bismuth oxide (Bi2O3) and tungsten oxide (WO3), were explored. The ability of the composites to attenuate gamma radiation was evaluated by measuring the emissions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-09, Vol.10 (17), p.e37289, Article e37289
Hauptverfasser: Kassim, Hamoud, Aldawood, Saad, Prasad, Saradh, Asemi, Nassar N., Aziz, Aziz A., AlSalhi, Mohamad S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the shielding properties of novel polymer composites, developed by integrating glycidyl methacrylate with nanoparticles of bismuth oxide (Bi2O3) and tungsten oxide (WO3), were explored. The ability of the composites to attenuate gamma radiation was evaluated by measuring the emissions from Ba-133, Co-60, Cs-137, and Na-22. X-ray diffraction (XRD) spectra were obtained for both the pure polymer glycidyl methacrylate and the samples containing nanostructures of Bi2O3, Bi2O3/WO3, and WO3, and scanning electron microscopy (SEM) was used to analyze the samples. The incorporation of Bi2O3 and WO3 nanoparticles into the polymer glycidyl methacrylate matrix significantly enhanced the composites' ability to attenuate gamma radiation, as demonstrated by the increased linear and mass attenuation coefficients. The results showed good agreement between the experiment and the XCOM database. The composites exhibited significant efficiency in attenuating lower-energy gamma rays, which is particularly advantageous in the medical and nuclear industries.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e37289