Advanced Methods for Photovoltaic Output Power Forecasting: A Review

Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue, particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in a number of ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-01, Vol.10 (2), p.487
Hauptverfasser: Mellit, Adel, Massi Pavan, Alessandro, Ogliari, Emanuele, Leva, Sonia, Lughi, Vanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue, particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in a number of applications, such as micro-grids (MGs), energy optimization and management, PV integrated in smart buildings, and electrical vehicle chartering. Over the last decade, a vast literature has been produced on this topic, investigating numerical and probabilistic methods, physical models, and artificial intelligence (AI) techniques. This paper aims at providing a complete and critical review on the recent applications of AI techniques; we will focus particularly on machine learning (ML), deep learning (DL), and hybrid methods, as these branches of AI are becoming increasingly attractive. Special attention will be paid to the recent development of the application of DL, as well as to the future trends in this topic.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10020487