Face anti-spoofing with joint spoofing medium detection and eye blinking analysis

Modern biometric systems based on face recognition demonstrate high recognition quality, but they are vulnerable to face presentation attacks, such as photo or replay attack. Existing face anti-spoofing methods are mostly based on texture analysis and due to lack of training data either use hand-cra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kompʹûternaâ optika 2019-08, Vol.43 (4), p.618-626
Hauptverfasser: Nikitin, M.Yu, Konushin, V.S., Konushin, A.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern biometric systems based on face recognition demonstrate high recognition quality, but they are vulnerable to face presentation attacks, such as photo or replay attack. Existing face anti-spoofing methods are mostly based on texture analysis and due to lack of training data either use hand-crafted features or fine-tuned pretrained deep models. In this paper we present a novel CNN-based approach for face anti-spoofing, based on joint analysis of the presence of a spoofing medium and eye blinking. For training our classifiers we propose the procedure of synthetic data generation which allows us to train powerful deep models from scratch. Experimental analysis on the challenging datasets (CASIA-FASD, NUUA Imposter) shows that our method can obtain state-of-the-art results.
ISSN:0134-2452
2412-6179
DOI:10.18287/2412-6179-2019-43-4-618-626