Complete convergence and complete integration convergence for weighted sums of arrays of rowwise $ m $-END under sub-linear expectations space
In this paper, we study the complete convergence and the complete integration convergence for weighted sums of $ m $-extended negatively dependent ($ m $-END) random variables under sub-linear expectations space with the condition of $ \hat{\mathbb{E}}|X|^p\leqslant C_{\mathbb{V}}(|X|^p) < \infty...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2023, Vol.8 (3), p.6705-6724 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the complete convergence and the complete integration convergence for weighted sums of $ m $-extended negatively dependent ($ m $-END) random variables under sub-linear expectations space with the condition of $ \hat{\mathbb{E}}|X|^p\leqslant C_{\mathbb{V}}(|X|^p) < \infty $, $ p > 1/\alpha $ and $ \alpha > 3/2 $. We obtain the results that can be regarded as the extensions of complete convergence and complete moment convergence under classical probability space. In addition, the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of $ m $-END random variables under the sub-linear expectations space is proved. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2023340 |