Complete convergence and complete integration convergence for weighted sums of arrays of rowwise $ m $-END under sub-linear expectations space

In this paper, we study the complete convergence and the complete integration convergence for weighted sums of $ m $-extended negatively dependent ($ m $-END) random variables under sub-linear expectations space with the condition of $ \hat{\mathbb{E}}|X|^p\leqslant C_{\mathbb{V}}(|X|^p) < \infty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2023, Vol.8 (3), p.6705-6724
Hauptverfasser: Dong, He, Tan, Xili, Zhang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the complete convergence and the complete integration convergence for weighted sums of $ m $-extended negatively dependent ($ m $-END) random variables under sub-linear expectations space with the condition of $ \hat{\mathbb{E}}|X|^p\leqslant C_{\mathbb{V}}(|X|^p) < \infty $, $ p > 1/\alpha $ and $ \alpha > 3/2 $. We obtain the results that can be regarded as the extensions of complete convergence and complete moment convergence under classical probability space. In addition, the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of $ m $-END random variables under the sub-linear expectations space is proved.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2023340