Optimising treatment decision rules through generated effect modifiers: a precision medicine tutorial

This tutorial introduces recent developments in precision medicine for estimating treatment decision rules. The objective of these developments is to advance personalised healthcare by identifying an optimal treatment option for each individual patient based on each patient's characteristics. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BJPsych open 2020-01, Vol.6 (1), p.e2-e2, Article e2
Hauptverfasser: Petkova, Eva, Park, Hyung, Ciarleglio, Adam, Todd Ogden, R, Tarpey, Thaddeus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This tutorial introduces recent developments in precision medicine for estimating treatment decision rules. The objective of these developments is to advance personalised healthcare by identifying an optimal treatment option for each individual patient based on each patient's characteristics. The methods detailed in this tutorial define composite variables from the patient measures that can be viewed as 'biosignatures' for differential treatment response, which we have termed 'generated effect modifiers'. In contrast to most machine learning approaches to precision medicine, these biosignatures are derived from linear and non-linear regression models and thus have the advantage of easy visualisation and ready interpretation. The methods are illustrated using examples from randomised clinical trials.
ISSN:2056-4724
2056-4724
DOI:10.1192/bjo.2019.85