A Multi-Layer Data-Driven Security Constrained Unit Commitment Approach with Feasibility Compliance

Security constrained unit commitment is an essential part of the day-ahead energy markets. The presence of discrete and continuous variables makes it a complex, mixed-integer, and time-hungry optimization problem. Grid operators solve unit commitment problems multiple times daily with only minor cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-10, Vol.15 (20), p.7754
Hauptverfasser: Feliachi, Ali, Iqbal, Talha, Choudhry, Muhammad, Ul Banna, Hasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Security constrained unit commitment is an essential part of the day-ahead energy markets. The presence of discrete and continuous variables makes it a complex, mixed-integer, and time-hungry optimization problem. Grid operators solve unit commitment problems multiple times daily with only minor changes in the operating conditions. Solving a large-scale unit commitment problem requires considerable computational effort and a reasonable time. However, the solution time can be improved by exploiting the fact that the operating conditions do not change significantly in the day-ahead market clearing. Therefore, in this paper, a novel multi-layer data-driven approach is proposed, which significantly improves the solution time (90% time-reduction on average for the three studied systems). The proposed approach not only provides a near-optimal solution (
ISSN:1996-1073
1996-1073
DOI:10.3390/en15207754