Technical Assessment of Hybrid HVDC Circuit Breaker Components under M-HVDC Faults
One of the technical challenges that needs to be addressed for the future of the multi-terminal high voltage direct current (M-HVDC) grid is DC fault isolation. In this regard, HVDC circuit breakers (DCCBs), particularly hybrid circuit breakers (H-DCCBs), are paramount. The H-DCCB, proposed by the A...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-12, Vol.14 (23), p.8148 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the technical challenges that needs to be addressed for the future of the multi-terminal high voltage direct current (M-HVDC) grid is DC fault isolation. In this regard, HVDC circuit breakers (DCCBs), particularly hybrid circuit breakers (H-DCCBs), are paramount. The H-DCCB, proposed by the ABB, has the potential to ensure a reliable and safer grid operation, mainly due to its millisecond-level current interruption capability and lower on-state losses as compared to electromechanical and solid-state based DCCBs. This paper aims to study and evaluate the operational parameters, e.g., electrical, and thermal stresses on the IGBT valves and energy absorbed by the surge arrestors within H-DCCB during different DC fault scenarios. A comprehensive set of modeling requirements matching with operational conditions are developed. A meshed four-terminal HVDC test bench consisting of twelve H-DCCBs is designed in PSCAD/EMTDC to study the impacts of the M-HVDC grid on the operational parameters of H-DCCB. Thus, the system under study is tested for different current interruption scenarios under a (i) low impedance fault current and (ii) high impedance fault current. Both grid-level and self-level protection strategies are implemented for each type of DC fault. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14238148 |