Space-Time Transformation in Flux-form Semi-Lagrangian Schemes
With a finite volume approach, a flux-form semi-Lagrangian (TFSL) scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the f...
Gespeichert in:
Veröffentlicht in: | TAO : Terrestrial, atmospheric, and oceanic sciences atmospheric, and oceanic sciences, 2010-02, Vol.21 (1), p.17-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With a finite volume approach, a flux-form semi-Lagrangian (TFSL) scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the flux from the present to the next time step is transformed into a spatial integration of the flux at the side of a grid cell (space) for the present time step using the characteristic-line concept. The TFSL scheme not only keeps the good features of the semi-Lagrangian schemes (no Courant number limitation), but also has higher accuracy (of a second order in both time and space). The capability of the TFSL scheme is demonstrated by the simulation of the equatorial Rossby-soliton propagation. Computational stability and high accuracy makes this scheme useful in ocean modeling, computational fluid dynamics, and numerical weather prediction. |
---|---|
ISSN: | 1017-0839 2311-7680 |
DOI: | 10.3319/TAO.2009.05.25.01(IWNOP) |